

"La Statistica al CNR al servizio del Paese"

July 5<sup>th</sup>, 2022



#### Consiglio Nazionale delle Ricerche

# In silico recognition of a prognostic signature in basal-like breast cancer patients

FEDERICA CONTE, PHD

Institute of Systems Analysis and Computer Science (IASI) "A. Ruberti"

CNR - Roma

## **Revolution in Biomedical Research**



#### **Biological Big Data**



#### **Biological Big Data**



#### **Biological Big Data**



#### To face this massive amount of data



## **Challenges for the future**



# 1) Accept the complexity



# 2) Integrate data from different sources



# 3) Find a common language







#### PLOS ONE

RESEARCH ARTICLE

# In silico recognition of a prognostic signature in basal-like breast cancer patients

Federica Conte<sup>1</sup>, Pasquale Sibilio<sup>1,2</sup>, Anna Maria Grimaldi<sup>3</sup>, Marco Salvatore<sup>3</sup>, Paola Paci<sup>3,4®</sup>\*, Mariarosaria Incoronato<sup>3®</sup>







# **Bioinformatics** pipeline

## **SWIM analysis**

#### https://github.com/sportingCode/SWIMmeR.git



# Switch genes



- They show coherent patterns of correlation suggesting they may be coregulated or functionally related
- They form localized connected subnetworks in the correlation network
- They are not local hub within their own module
- They are important connector nodes able to convey information between modules of the correlation network

#### the plant journal



2019

2017

The Plant Journal (2019) 99, 895-909

doi: 10.1111/tpj.14370

# Genetic, epigenetic and genomic effects on variation of gene expression among grape varieties

Gabriele Magris<sup>1,2</sup> (b), Gabriele Di Gaspero<sup>2</sup> (b), Fabio Marroni<sup>1,2</sup> (b), Sara Zenoni<sup>3</sup> (b), Giovanni Battista Tornielli<sup>3</sup> (b), Mirko Celii<sup>1,2</sup>, Emanuele De Paoli<sup>1</sup> (b), Mario Pezzotti<sup>3</sup> (b), Federica Conte<sup>4,5</sup>, Paola Paci<sup>4,5</sup> (b) and Michele Morgante<sup>1,2,\*</sup> (b)

#### Plant Physiology

Ripening Transcriptomic Program in Red and White Grapevine Varieties Correlates with Berry Skin Anthocyanin Accumulation

Mélanie Massonnet, Marianna Fasoli, Giovanni Battista Tornielli, Mario Altieri, Marco Sandri, Paola Zuccolotto, Paola Paci, Massimo Gardiman, Sara Zenoni, Mario Pezzotti
Published August 2017. DOI: https://doi.org/10.1104/pp.17.00311





Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development

Maria Concetta Palumbo,<sup>a,1</sup> Sara Zenoni,<sup>b,1</sup> Marianna Fasoli,<sup>b</sup> Mélanie Massonnet,<sup>b</sup> Lorenzo Farina,<sup>c</sup> Filippo Castiglione,<sup>a</sup> Mario Pezzotti,<sup>b</sup> and Paola Paci<sup>a,e,2</sup>

#### **PLANTS**



2020

#### FEBS Letters



Gene network analysis using SWIM reveals interplay between the transcription factor-encoding genes HMGA1, FOXM1, and MYBL2 in triple-negative breast cancer

Giulia Fiscon<sup>1,2</sup>, Silvia Pegoraro<sup>3</sup>, Federica Conte<sup>1</sup> (10), Guidalberto Manfioletti<sup>3,†</sup> and Paola Paci<sup>1,4,†</sup>

#### SCIENTIFIC REPORTS

Integrated transcriptomic correlation network analysis identifies COPD molecular

#### determinants

Paola Pacio<sup>11</sup>, Giulia Fiscon<sup>1</sup>, Federica Conte<sup>1</sup>, Valerio Licursi<sup>2</sup>, Jarrett Morrow<sup>3</sup>, Craig Hersh<sup>3</sup>, Michael Cho<sup>3</sup>, Peter Castaldi<sup>3</sup>, Kimberly Glass<sup>3</sup>, Edwin K. Silverman<sup>3</sup> & Lorenzo Farina<sup>4</sup>

#### 2019

2018

#### Endocrine

International Journal of Basic and Clinical Endocrinology

*BRAF*<sup>V600E</sup>-mutant cancers display a variety of networks by SWIM analysis: prediction of vemurafenib clinical response

Rosa Falcone  $(0^1 \cdot \text{Federica Conte} (0^{2,3} \cdot \text{Giulia Fiscon} (0^{2,3} \cdot \text{Valeria Pecce}^1 \cdot \text{Marialuisa Sponziello} (0^1 \cdot \text{Cosimo Durante} (0^1 \cdot \text{Lorenzo Farina} (0^4 \cdot \text{Sebastiano Filetti}^1 \cdot \text{Paola Paci} (0^2 \cdot \text{Antonella Verrienti} (0^1 \cdot \text{Cosimo Durante} (0^1 \cdot \text{Cosimo Dur$ 

#### SCIENTIFIC **REPORTS**

Computational identification of specific genes for glioblastoma stem-like cells identity

Giulia Fiscon (1,2, Federica Conte<sup>1,2</sup>, Valerio Licursi<sup>1</sup>, Sergio Nasi<sup>3,4</sup> & Paola Paci (1,2)

#### HUMAN DISORDERS

2018

**BMC Bioinformatics** 

#### RESEARCH

SWIM tool application to expression data of glioblastoma stem-like cell lines, corresponding primary tumors and conventional glioma cell lines Giulia Fiscon<sup>1,2</sup>, Federica Conte<sup>1,2</sup> and Paola Paci<sup>1,2</sup>\*

2017



#### SWIM: a computational tool to unveiling crucial nodes in complex biological networks

GNB 2016

Paola Paci<sup>1,2</sup>, Teresa Colombo<sup>1</sup>, Giulia Fiscon<sup>1</sup>, Aymone Gurtner<sup>3</sup>, Giulio Pavesi<sup>4</sup> & Lorenzo Farina<sup>5</sup>



V CONGRESSO GRUPPO NAZIONALE DI BIOINGEGNERIA

Integrated network analysis for studying human lung squamous cell carcinoma G. Fiscon<sup>1\*</sup>, F. Conte<sup>1\*</sup>, T. Colombo<sup>1</sup>, L. Farina<sup>2</sup>, and P. Paci<sup>1</sup>

# SWIM-based analysis of BC subtypes







Article

The New Paradigm of Network Medicine to Analyze Breast Cancer Phenotypes

Anna Maria Grimaldi <sup>1,†</sup><sup>®</sup>, Federica Conte <sup>2,†</sup><sup>®</sup>, Katia Pane <sup>1,†</sup><sup>®</sup>, Giulia Fiscon <sup>2</sup><sup>®</sup>, Peppino Mirabelli <sup>1</sup>, Simona Baselice <sup>1</sup>, Rosa Giannatiempo <sup>3</sup>, Francesco Messina <sup>3</sup>, Monica Franzese <sup>1</sup><sup>®</sup>, Marco Salvatore <sup>1</sup>, Paola Paci <sup>4,\*,‡</sup><sup>®</sup> and Mariarosaria Incoronato <sup>1,\*,‡</sup><sup>®</sup>

#### **Common switch genes among BC subtypes**



**IHC classification** 



| Gene name | Gene description                                        | Location          | Type(s)                    | Gene stable ID  |  |  |
|-----------|---------------------------------------------------------|-------------------|----------------------------|-----------------|--|--|
| AURKA     | aurora kinase A                                         | Nucleus kinase    |                            | ENSG0000087586  |  |  |
| CCNB1     | cyclin B1                                               | Cytoplasm kinase  |                            | ENSG00000134057 |  |  |
| CCNB2     | cyclin B2                                               | Cytoplasm         | other                      | ENSG00000157456 |  |  |
| CDC20     | cell division cycle 20                                  | Nucleus           | other                      | ENSG00000117399 |  |  |
| CDC45     | cell division cycle 45                                  | Nucleus           | other                      | ENSG0000093009  |  |  |
| CDK1      | cyclin dependent kinase 1                               | Nucleus           | kinase                     | ENSG00000170312 |  |  |
| ESPL1     | extra spindle pole bodies like<br>1, separase           | Nucleus peptidase |                            | ENSG00000135476 |  |  |
| NEK2      | NIMA related kinase 2                                   | Cytoplasm         | kinase                     | ENSG00000117650 |  |  |
| PLK1      | polo like kinase 1                                      | Nucleus           | kinase                     | ENSG00000166851 |  |  |
| PTTG1     | PTTG1 regulator of sister chromatid separation, securin | Nucleus           | transcription<br>regulator | ENSG00000164611 |  |  |
| RAD54L    | RAD54 like                                              | Nucleus           | enzyme                     | ENSG0000085999  |  |  |

# Aurora Kinase A (AURKA)

- ◆ It is a kinase with a key role in cell division and cell-cycle progression
- It is critical for proper formation of the mitotic spindle and chromosomal segregation
- It is deregulated in many human cancers
- It collaborates with numerous tumor suppressors (e.g., p53, BRCA1, BRCA2)
- It is suggested as a priority pharmaceutical target for the treatment of cancers



Molecular cancer, 14(1), 1-13, (2015)

#### **AURKA protein: experiments in BC cell lines**





International journal of molecular sciences, 21(18), 6690,(2020)

#### **AURKA protein: experiments in BC tissues**



| Breast specimens | Number of samples |  |  |  |  |  |
|------------------|-------------------|--|--|--|--|--|
| Control          | 4                 |  |  |  |  |  |
| Luminal A        | 6                 |  |  |  |  |  |
| Luminal B        | 5                 |  |  |  |  |  |
| Her2-enriched    | 8                 |  |  |  |  |  |
| Triple negative  | 4                 |  |  |  |  |  |

International journal of molecular sciences, 21(18), 6690,(2020)

#### **Basal-like specific switch genes**



#### Prognostic value of the basal-like specific switch genes



# **Overexpression of the basal-like prognostic biomarkers**

Expression















12



**SLC7A11** 



Tumour

Expression Normal Tumour

**GSDMC** 

\*\*\*\*

- The t-test was used to compare ٠ the means of the switch genes between normal and tumour condition
- The statistical significance was ٠ indicated by the star symbols: \*p-value  $\leq$  0.05; \*\*p-value  $\leq$ 0.01; \*\*\*p-value ≤ 0.001; \*\*\*\*pvalue ≤ 0.0001

# **Overexpression of the basal-like prognostic biomarkers**



#### LRP8



RCOR2

\*\*\*\*

\*\*\*\*

ns

Anova, p<2.2e-16

LuminalA

15

15

Expression



DSCC1

#### GINS4





CDCA7

LuminalB HER2-enriched Basal-like





**TUBA1C** 



#### PRAME

LuminalB HER2-enriched Basal-like







LuminalA LuminalB HER2-enriched Basal-like



#### LuminalA LuminalB HER2-enriched Basal-like

- The ANOVA test was used to compare the means of selected genes in patients grouped based on breast cancer subtypes
- The t-test was used for multiple ٠ pairwise-comparisons
- ٠ The black dashed line indicates the median value used in the Kaplan-Meier survival analysis

LuminalA LuminalB HER2-enriched Basal-like

Expression

15

10







#### Linear regression model fitting



## **Protein expression levels**



# Gene regulatory network of the basal-like prognostic biomarkers



# Genomic and epigenomic alterations of the basal-like prognostic biomarkers



# **Conclusions**

|         |                     | RNA                   |             |              |                                    | Protein        |                                          |       |                      |
|---------|---------------------|-----------------------|-------------|--------------|------------------------------------|----------------|------------------------------------------|-------|----------------------|
|         | TFs                 | CNVs                  | Methylation | SWIM         | KM analysis (log rank p-<br>value) |                | model fitting<br>(index R <sup>2</sup> ) |       | IHC staining         |
|         | TRRUST/Pscan/PPI    | TCGA                  | TCGA        | TCGA         | TCGA                               | other datasets | subtype                                  | stage | HPA                  |
| CENPN   | NRF1                | amp in BL/del in LumA | hypo in BL  | switch genes | 0.02                               | 4.9E-6         | 0.99                                     | 0.96  | not available*       |
| LRP8    | HIC1                | amp in BL/del in LumA | -           | switch genes | 0.01                               | 2.4E-4         | 0.98                                     | 0.63* | more expressed in BC |
| DSCC1   | HMBOX1              | amp in BL             | -           | switch genes | 0.05                               | 3.5E-8         | 0.95                                     | 0.78  | more expressed in BC |
| CTPS    | MYC, TWIST1-2, NRF1 | amp in BL/del in LumA | hypo in BL  | switch genes | 0.01                               | 8.2E-5         | 0.94                                     | 0.72  | more expressed in BC |
| RCOR2   | -                   | -                     | -           | switch genes | 0.05                               | 4.3E-3         | 0.93                                     | 0.47* | more expressed in BC |
| GINS4   | -                   | -                     | -           | switch genes | 0.04                               | 6.4E-3         | 0.90                                     | 0.68  | more expressed in BC |
| TUBA1C  | TP53, NFKB1         | del in BL             | -           | switch genes | 0.01                               | 1.3E-6         | 0.89                                     | 0.76  | more expressed in BC |
| PRAME   | NRF1, SOX9, RARA    | amp in BL/del in LumA | hypo in BL  | switch genes | 0.03                               | 9.9E-6         | 0.83                                     | 0.76  | not available*       |
| SLC7A11 | -                   | -                     | -           | switch genes | 0.04                               | 0.03           | 0.80                                     | 0.46* | not available*       |
| CDCA7   | MYC, E2F1           | amp in BL             | -           | switch genes | 0.01                               | 1.3E-4         | 0.73                                     | 0.32* | not available*       |
| GSDMC   | -                   | amp in BL             | hypo in BL  | switch genes | 0.01                               | 4.9E-4         | 0.64*                                    | 0.05* | not available*       |

Abbreviations: TFs, Transcription Factors; CNVs, Copy Number Variations; KM, Kaplan-Meier; IHC, Immunohistochemistry; PPI, protein-protein interactions; TCGA, The Cancer Genome Atlas; HPA, Human Protein Atlas; BC, Breast Cancer; BL, Basal-like; LumA, Luminal A; amp, amplified; del, deleted; hypo, hypomethylated. Asterisk (\*) was used to highlight values not satisfying the chosen thresholds as well as not available data.



federica.conte@iasi.cnr.it