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PART 1

AI definition, paradigms, 
application and 

limitations



What is Artificial Intelligence?
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• Artificial intelligence (AI) is intelligence demonstrated by
artifacts (e.g., machines)

• AI is opposed to natural intelligence (NI) displayed by animals,
including humans

• AI endows machines of human-like cognitive functions, such as
learning and problem solving



What is intelligence?
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Ability to perceive an environment, elaborates on it, and take
actions/decisions that maximize the chance of achieving a given goal

Environment Goal

Perception/computation



6

The ingredients of the cake:  AI = C + B + A

Computation

Big data

Algorithms

+

+

AI is the product of a tremendous 
increase in C, B, and A
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AI paradigms?

Symbolic

AI

Machine Learning

Symbol-based
High semantics (open box)

Formal logic
Rule-based

Deterministic

Data-driven
Statistically-based

Poor semantics (black box)
Algorithm-based

Probabilistic
Neuro-Symbolic
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Timeline of AI development?

1965 1969 1979 19861950

1956
Dartmouth College 

Workshop

1989
Convolutional 

Neural Network

Lasso

1995
Support 

Vector Machines

Boosting

1997
Recursive NN 

and LSTM

2000

Random 

Forests

2000 2018

Great 

expectations
Early 

difficulties

Expert 
Systems

development Industry 

applications of 

Expert Systems

Industry development of 

Deep Learning applications

Neuro-Symbolic AI

Neural networks 

and statistical learning research 

Symbolic AI Machine learning Neuro-Symbolic AI

1983
Birth of the Internet

2010
The Internet of things

Cerulli, 2022
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Symbolic AI 
vs.

Statistical learning 
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Rise and fall of Symbolic AI - 1

Allen Newell, Herbert A. Simon
Pioneers in Symbolic AI

What is Symbolic AI ?
Branch of artificial intelligence attempting to explicitly
represent human learning in a declarative form (i.e.
facts and rules)

Building “General Problem Solvers”

Hard-wired rule-based reasoning systems like Expert
Systems became the foundation for almost 40 years of AI
research

Based on Thomas Hobbes statement:

«Thinking is manipulation of symbols 
and Reasoning is computation»
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Rise and fall of Symbolic AI - 2

What is a symbol?
“A perceptible something that stands for something else”

• Alphabet symbols, numerals, road signs, music symbols, etc.
• A symbol such as ‘apple’ it symbolizes something which is edible, red in color. In some other

language, we might have some other symbol which symbolizes the same edible object

Symbols
Manipulation 

by
hard-wired Rules

New 
Knowledge

New knowledge comes up from manipulating symbols via logical rules  
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Rise and fall of Symbolic AI - 3

The fall of Symbolic AI

The main problem with Symbolic AI was that it aimed at 

TEACHING A MACHINE LOGICAL RULES 

instead of 

LETTING THE MACHINE TO LEARN FROM EXPERIENCE 

Complex intelligence tasks, general patterns’ recognition and unspecialized procedural tasks cannot
successfully carried out using the Symbolic AI paradigm
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Rise and fall of Symbolic AI - 4

The Symbolic AI cannot solve the “learning-by-experience paradox”

Emma was here a six year old girl. She spoke a fluent
Italian. She was able to understand it and make herself
understood by other Italian people

Emma was never taught a single Italian grammar rule.
She did not even know about the existence of grammar
rules

But she was able to recognize words, understand their
meaning, and process them accordingly

She has learnt Italian by experience
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The rise of Statistical Learning - 1
In 1959, Arthur Samuel, pioneered the field of Machine Learning (ML), by
defining it as the “field of study that gives computers the ability to learn without
being explicitly programmed”

ML can be understood as a set of computational methods that use “experience”
(i.e. past event frequencies) to improve performance by generating accurate
predictions

IF HUMANS LEARN FROM EXPERIENCE 

LET MACHINES LEARN FROM DATA
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The rise of Statistical Learning - 2

Data (y , X)
Collection of many single events occurred in the past

(frequencies = experiences) linking an event y and many events X

Learning algorithm: a mapping of X into y 

Learning = higher predictive power
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The rise of Statistical Learning - 3

f
[X1, X2, … , Xp] Y

MAPPING

PREDICTION
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The rise of Statistical Learning - 4

E(Y| X1, X2, … , Xp) = f(X)

The fundamental statistical object designing the mapping is the
conditional expectation of y given X = [X1, X2, … , Xp]:

NOTE: we do not focus on P(y|X) as it is too demanding



EXAMPLE

Numeral recognition
Symbolic AI 

vs.
Machine Learning
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Numeral recognition

This number is a 1 This number is a 7

Task: Making a machine able to recognize whether this numeral is a 1 or a 7 
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Numeral recognition: Symbolic AI - 1

Come up with this possible rule:

- If (A <= 45º): it is a 7

- Else if (A > 45º): it is a 1 

45º
A

Possible strategy. Put the numbers into a rectangle. Then, consider the angle A as follows:

20

A -> 0º



45º
A

B -> 0º

If (A <= 45º) & (B > 45º):    it is a 7
If (A > 45º)  & (B <= 45º):   it is a 1 

B
45º

Complication. Number 7 is commonly written using a steeper bar (we can then exploit angle B):

Numeral recognition: Symbolic AI - 2
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Come up with this possible rule:

A -> 0º



If (A <= 45º) & (B > 45º):  it is a 7

If (A > 45º)  & (B <= 45º): it is a 1 

Complication. Number 7 is commonly written using a steeper bar (we can then exploit angle B):

Numeral recognition: Symbolic AI - 3
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Come up with this possible rule:

20º

A 7

1

60º

30º

50º

B



Numeral recognition: limits of Symbolic AI  - 1

Can we design rule-based symbolic
algorithms able to let a machine
recognize “hand-written” numerals?

23
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Can we design rule-based symbolic
algorithms able to let a machine recognize
patterns like these ones?

Puppy
or

Muffin ?

Image recognition: Limits of Symbolic AI  - 2



• The previous rule-based recognition algorithm is simple, and it is likely to assure a

recognition accuracy around 90% or even more

• However, when considering other numerals, the problem gets more complicated, and

we need a larger set of rules to come up with a good recognition accuracy

• But what about recognition of fuzzier images, as ”hand-written” numerals? In this case

things get much more complicated and rule-based recognition may dramatically fail or

require extravagant ruling patterns, that most of the times are ”local rules” not

generalizable to other recognition settings

• Machine Learning – i.e. learning from experience – is a workable more effective

solution

Numeral recognition: limits of Symbolic AI  - 3
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ML uses past recorded experience on how
people connected specific numerals to
specific configurations (patterns) of hand-
written numerals

Numeral recognition: Machine Learning

26
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Numeral recognition: Machine learning

Task: Making a machine able to recognize whether the numeral is a 1 or a 3 

• ML re-organizes the problem as a (y,X) mapping
problem where (y,X) is a (training) dataset

• So, ML needs to generate a dataset able to map
y (the true numeral) into X (the usual ways
people write numerals 1 and 3 by-hand)

• The trick is to decompose the numeral into
adjacent equally spaced pieces (pixels) and use
them as predictors (X)

next slide



1 2 3 1 2 3

1

2

3

1

2

3

Y x1 x2 x3 x4 x5 x6 x7 x8 x9

1 0 0.35 0 0.2 0.4 0 0 0.25 0

3 0 0.18 0.1 0.7 0.6 0.15 0.05 0.2 0.15

Image of  “1”

Image of  “3”

• Each single square is one pixel

• The number inside each pixel is the
percentage of the pixel area covered
by the ink

Data representation of the two images
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Y x1 x2 x3 x4 x5 x6 x7 x8 x9

1 0 0.35 0 0.2 0.4 0 0 0.25 0

3 0 0.18 0.1 0.7 0.6 0.15 0.05 0.2 0.15

1 0 0.30 0 0.1 0.4 0 0.01 0.22 0

1 0 0.35 0.01 0.3 0.4 0 0 0.23 0

3 0 0.16 0.1 0.65 0.6 0.16 0.09 0.3 0.14

3 0 0.15 0.1 0.75 0.7 0.14 0.06 0.2 0.15

? 0 0.30 0 0.1 0.4 0 0.01 0.22 0

? 0 0.35 0 0.2 0.4 0 0 0.25 0

Based on many images we aim to predict new images

Image of  “1”

Image of  “3”
Image of  “1”

Image of  “1”

Image of  “3”

Image of  “3”

Image to predict

Image to predict

29



1. Build a training dataset made of all the images

2. Use a learner, i.e. a mapping between {Y} and X={x1, … ,x9}

3. As long as certain configurations of X are likelier to be associated to a

specific Y, a proper learner can learn how to link a new configuration
(i.e., a new image) to a specific numeral

More complex images recognition (faces, objects) follow a 

similar logic 

Protocol of imaging recognition

30



Olivetti faces dataset

Learners

Face completion: predict the lower half of a face by knowing the upper half

31
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Limitations and failure of
statistical learning
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• Ethics
When decisions are taken by a machine, who is responsible for their effect?

• Causality
The mapping found out by a ML algorithm is based on correlation, not on causality

• Scope
Should we use ML in whatever analytical context? Even when the aim is pure prediction,
ML algorithms can skip fundamental theory: “should we make weather forecasts without
relying on Newton's laws of motion”?

• Interpretability
There exists a fundamental trade-off between predictability and interpretability. In some
research contexts interpretability is more important that predictability

ML limitations
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ML failure
Can ML prediction fail?  Yes! == > It may depend on data constrains

Availability

Data constrains

Sparseness

Poor information 
about y and X

Information about 
y and X is sparse

Quality Ordering

Poor data quality and  
measurement errors

Spatial/temporal
ordering of 

features and observations
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The consequences of 
data sparseness



Data sparseness weakens prediction

X = age

Y = cholesterol

Xnew

mP(Xnew)

X = age

Y = cholesterol

xnew

mP(Xnew)

Low sparseness

?

High sparseness

True 

Predicted
mT(Xnew)ER

RO
R

Old 
people

Young 
people

Young 
people

Old 
people
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The consequences of 
data unordering
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Higher data ordering implies higher prediction

One-token-ahead prediction

Natural Language 
processing

I love eating ?I am Italian ,

1. Each pixel is a variable in the dataset
2. Adjacent pixels are highly correlated

This depends on the fact that, by nature, the 
nose is at the center of the face, with eyes on the 

left and right and forehead at the top, ….

Similar to spatial correlation in statistics

Face recognition

Imaging 
recognition

1. Find the more likely word after a sequence of words
2. Train over a frequency-context (e.g., whatsup chats) 

This depends on human beings 
conventionality / Homophily

Similar to serial correlation in statistics



39

Lower data ordering implies lower prediction

• In the social-sciences, information is strongly unordered

• This explains why deep learning prediction is poorly
successful for micro socio-economic data (data on
workers, businesses, farms, etc.)

• Generally, other ML methods than neural networks do
better with socio-economic data (Random forests,
Boosting, SVM)
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• AI matters: revolutionizing human activities and society

• Machine Learning: today’s leading AI paradigm

• ML limits: ethics, interpretability, and scope

• ML failure: sparseness, poor ordering

Can symbolic AI help ML in failing situations?
The neuro-symbolic approach seems a promising way to go
(TBA in a next seminar ….J)

Conclusions
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PART 2

AI research at CNR-IRCRES:
Optimal Policy Learning 

(OPL) 
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What AI research at CNR-IRCRES?

Statistical learning for optimal 
socio-economic policy design

Optimal Policy Learning 
(OPL)
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OPL definition
•What is policy learning?

Process of improving program welfare achievements by re-iterating similar policies
over time

• Optimal treatment assignment
Policymakers can optimally fine-tune the treatment assignment of a prospective
policy using the results from an RCT or observational study. Assignment rules depends
on the class of policies considered (here we focus on threshold-based and linear-
combination policies)

•Maximizing constrained welfare
The policymaker hardly manage to reach the best solution (unconstrained maximum
welfare) because of institutional/economic contains of various sort
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Policy as selection problem

Policymaker
action

Available options

Selected 
unit

Policy 
objectives/
constraints

1 2

3
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Learning policy from experience

Past 
Policy 

experience

Learning 
process

New policy 
design 

based on 
empirical 
maximum 

welfare

Policy 
implementation

Current 
policy 

welfare

Experience Learning Ex-ante 
decision

Current 
experience

Action
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Policy learning within policy EVALUATION cycle

Po
lic

y 
le

ar
ni

ng
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Policy direct and indirect effect 
Total

Policy effect

Direct
effect

Indirect
effect

S = Selection process operated by a 
specific treatment rule

This is the effect obtained if the “assignment 
to treatment” was run at random

Empirical Welfare Maximization aims 
at maximizing the indirect effect 
via optimal assignment to treatment within
specific classes of policies
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Optimal treatment assignment
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Optimal treatment assignment

Under selection-on-observables, we know that:

!(X) = E(Y|X ,T = 1) – E(Y|X ,T = 0)  

These two conditional expectations are identified by data.
Whatever ML algorithm can be used for estimation (Boosting,
Random forests, Neural networks, Nearest neighbor, etc.)

Extension to selection-on-unobservables straightforward
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ML estimation of !(X)

Estimation of the distribution of the conditional average treatment effects (CATE) using the ML methods
implemented via c_ml_stata_cv (Cerulli, 2022). Note: dashed vertical line indicates the average
treatment effect (ATE).
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Optimal unconditional welfare
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NAÏVE OPTIMAL SELECTION
1. Given {X,Y,T} from an already-implemented policy: estimate the idiosyncratic effect

! " . This means we have learnt the mapping:

#→ $ # (learning from experience)

2. Consider a prospective second policy round with a new eligible set {X’}, and compute
the learnt {$ #′ } over X’.

3. Rank individuals so that: $ #1′ > $ #2′ > $ #3′ > … > 0.

4. Given a monetary budget C and a unit cost ci , find -.∗:

0
12.

34∗

56 = 8
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Constrained welfare maximization - 1
qEligibility, budget, ethical, or institutional constrains make policymakers
unable to implement the optimal unconstrained policy assignment

qThey are obliged to rely on a constrained assignment rule selecting
treated units according to their characteristics

qThe welfare thus obtained may drop down

qPolicymakers can however produce the largest feasible constrained
welfare
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Constrained welfare maximization - 2
• The policymaker wants to treat only “young” people

• In theory, he can continue to use the naïve approach, by
excluding from treatment all the individuals with age smaller
than a certain age A*

• The problem is that different A* can induce different level of
welfare

• The problem becomes that of choosing A* to maximize the
effect/welfare
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Example: constrained univariate threshold-based policy

• The policymaker wants to treat only “young” people

• In theory, he can continue to use the naïve approach, by excluding from
treatment all the individuals with age smaller than a certain age A*

• The problem is that different A* can induce different level of welfare

• The problem becomes that of choosing A* to maximize the effect/welfare
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Policy classes
There exist however several classes of policies used by
policymakers to select in a constrained decision context. The
most popular are:

qThreshold-based

qLinear combination

qFixed-depth decision trees
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Policy classes

R1 R2 R3 R4

X1 < t1

X2 < t2 X1 < t3

2-depth tree

t1

t2

t3X1

X2

X1

X2

X1

X2

Threshold-based Linear combination Fixed-depth tree

R1

R2

R3 R4

c1X1 + c2X2 ≥ c3

c1

c2

{X1 ≥ c1} 
∩

{X2 ≥ c2} 

Decision boundary

Selection area

Legend:
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Optimal constrained welfare
The corresponding welfare is a function of cx:
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Threshold-based policy

Splitting 
feature

Threshold 
value

Optimal 
unconstrained

policy

Unit
selection 
function

Optimal constrained
treatment rule
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Optimal constrained treatment rule (multivariate case)

Splitting 
feature x

Splitting 
feature z

Threshold 
Value for z

Threshold 
Value for x

Optimal 
unconstrained

policy

Policymakers rely on 
two or more selection 
indicators 
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Implementation algorithm
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Linear combination policy (bivariate case)

Optimal 
unconstrained

policy

Generates a score to compare with a threshold

score threshold



DATA: National Supported Work Demonstration (NSWD), an RCT
by LaLonde (1986).

TARGET: Effect of a 1976 job training program on people real
earnings in 1978

CONTROLS: age, race, educational attainment, previous
employment condition, real earnings in 74 and 75

Application



Conditional Average 
Treatment 

Effect

Conditional Average 
Treatment 

Effect on Treated 

Estimation of ATE(x) and ATET(X)



Monotonicity of welfare 
on educational attainment 

Reference ATET = 1.76
AWG = Average Welfare Gain

AWG = 
2.65 - 1.76 =
0.89

AWG = 
4.24 - 1.76 =
2.48

AWG = 
2.85 - 1.76 =
1.09

Constrained welfare maximization (univariate) 



Estimated Bayes optimal 
decision boundary

Optimal selection zone

Reference ATET = 1.74

Average Welfare Gain = 
3.99 – 1.74 = 2.255

Constrained welfare maximization 
(Bivariate) 



1. Monotonicity
Welfare increases monotonically with a feature 
=> too few to treat or too many to treat

2. Sparseness
X’ comes from a different joint distribution than X

Trade-offs arising in this case, so the best to 
do is offering the policymaker a “menu” of possible 
treatment choices given, for example, a pre-fixed budget

Empirical welfare maximization:
relevant issues



SPARSENESS
the distribution of X and X’ have low overlap

0
.1

.2
.3

.4

K
er

ne
l d

en
si

ty

-5 0 5 10 15 20
x

Treated
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-4 -2 0 2 4 6
x

Treated

Untreated

High sparseness Low sparseness

!(#) ≅ !(#&)! # ≠ !(#&)



EXAMPLE

AGE –––––––––––––>   set at its optimal level

EDUCATION –––––––>  free to vary

Feature plagued by monotonicity

A SOLUTION TO MONOTONICITY
Trade-offs and the “menu-strategy”



Trade-offs and the “menu-strategy”



0
.2

.4
.6

.8
1

Ag
e

0 .2 .4 .6 .8 1
Education

Decision boundary Selected
Not-selected

Total optimal welfare =748
Total oracle welfare = 764
Regret (absolute) = 15.53
Regret (%) = 2.03
Average welfare = 2.24
Average oracle welfare = 2.23
Share of treated units = 75 %

OPTIMAL SELECTION WITH A Linear combination policy



We formed a research group for OPL software
implementation:

Stata
Cerulli (CNR), opl command

R
Guardabascio (Perugia University) and Brogi (Istat)

Python
De Fausti (Istat)

SOFTWARE 
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Conclusion
• Optimal Policy Learning: AI/ML new frontier of policy design

• Machine Learning algorithms for estimating policy effects

• Generalization to many policy classes

• Producing Stata/R/Python software platforms for OPL

• CNR-IRCRES leading OPL development

• Future development: DATA-DRIVEN DECISION MAKING (within which OPL

is a subset of model)


